

Available online at www.sciencedirect.com

Carbohydrate Research 341 (2006) 2717–2722

Carbohydrate RESEARCH

Note

Aryl C-glycosylation of phenols with glycosyl trifluoroacetimidates

Yuwen Li, Guo Wei and Biao Yu*

State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received 27 June 2006; received in revised form 21 August 2006; accepted 25 August 2006 Available online 15 September 2006

Abstract—Aryl C-glycosylation of a variety of phenols with glycosyl trifluoroacetimidates in the presence of TMSOTf was examined, leading to the corresponding *ortho*-hydroxyaryl C-glycosides in variable yields.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: C-Glycosylation; Aryl C-glycosides; Glycosyl trifluoroacetimidates; Phenols

The Friedel-Crafts reaction between glycosyl donors and electron-rich aromatic compounds is the earliest and the most straightforward approach, which is also employed by Nature,² for the synthesis of aryl C-glycosides.³ When a phenol is used in the reaction, the corresponding O-glycoside might be produced first, which then undergoes an O

C rearrangement to give the ortho-hydroxyaryl C-glycoside in a regioselective manner.^{3,4} In this thermodynamically controlled C-glycosylation reaction, matching of the reactivities of the glycosyl donor and the aromatic acceptor, which determines the reaction conditions, has proven to be critical for producing the desired C-glycoside. Otherwise, competing side reactions of the two components and the resulting coupling products will lead to complex mixtures. Among the various glycosyl donors that have been applied in the aryl C-glycosylation, glycosyl trichloroacetimidates are one of the most successful types and require mild activation conditions using TMSOTf or BF₃·OEt₂ as promoters.⁵ Recently, glycosyl trifluoroacetimidates have been developed as valuable alternatives to the glycosyl trichloroacetimidates.⁶ The glycosyl trifluoroacetimidates are relatively more self stable, but can behave as efficiently as the corresponding glycosyl trichloroacetimidates during glycosylation. Here, we report the C-glycosylation of a variety of

phenols with perbenzylated gluco-, galacto-, and mannopyranosyl trifluoroacetimidates.

We first tried the coupling of 2,3,4,6-tetra-O-benzylglucopyranosyl trifluoroacetimidate $(1a)^6$ with p-methylphenol (2a) and 7-hydroxycoumarin (2b). Even under forcing conditions (1.2 equiv of TMSOTf at rt), only the corresponding α -O-glycosides (3aa and 3ab) were isolated as the major products (Table 1, entries 1 and 2); the desired C-glycosides were not detected. The more electron-rich mono- and dimethoxyphenols 2c-f were then employed as acceptors for the C-glycosylation with trifluoroacetimidate 1a. Under a variety of conditions with TMSOTf or BF₃·EtO₂ as a promoter, the reactions led to complex mixtures. Thus, only the major products (1.2 equiv of TMSOTf, $0 \, ^{\circ}\text{C} \rightarrow \text{rt}$) were isolated, which were characterized and shown to be the expected ortho-hydroxyaryl-β-C-glycosides (3ac-af). The yields were quite low (21-37%) except for 3af (71%). When naphthen-2-ol (2g), which bears an exceedingly nucleophilic 1-carbon, was used as an acceptor, the C-glycoside 3ag was obtained in a good 69% yield. These results are in accordance with those of the corresponding coupling reactions using 2,3,4,6-tetra-O-benzylglucopyranosyl trichloroacetimidate (0.05-0.1 equiv of TMSOTf, $-30 \, ^{\circ}\text{C} \rightarrow \text{rt})^{5c}$ and 2,3,4,6-tetra-O-benzylglucopyranosyl diphenylphosphate (1.2 equiv TMSOTf, $0 \, {}^{\circ}\text{C} \rightarrow \text{rt})^{7}$ as donors. However, when a catalytic amount of TMSOTf (0.1 equiv) was used to promote the coupling of 1a and 2g, only the

^{*}Corresponding author. Tel.: +21 54925131; fax: +21 64166128; e-mail: byu@mail.sioc.ac.cn

Table 1. Coupling of the glycosyl N-phenyltrifluoroacetimidates (1a-c) with phenol acceptors (2a-h)^a

Entry	Donor	Acceptor	Product	Yield (%) ^b
1	1a	2a	BnO O Me 3aa	47°
2		2b	BnO BnO 3ab ^{5c}	41
3		2c	BnO OBn OMe 3ac 5c OBn OH OMe	27
4		2d	BnO OBn OMe 3ad 5c OBn OH	21
5		2 e	BnO MeO OMe BnO OBn OH	37
6		2 f	BnO OMe OMe OMe OMe OMe	71
7		2 g	BnO OBn HO HO	69
8		2h	BnO HO BnO OH 3ah	56
9	1 b	2c	OBn OMe OBn OH	59°
10		2d	OBn OMe OMe OMe OBn OH	45°
11		2 e	OBn OMe OMe OBn OH	67°
12		2f	_	d
13		2g	OBn OBn OH 3bg	76°
14		2h	OBn OBn OH 3bh	69°

Table 1 (continued)

Entry	Donor	Acceptor	Product	Yield (%)b
15	1c	2c	_	d
16		2d	BnO O OMe OMe OMe 3cd	48°
17		2 e	BnO OMe 3ce	76°
18		2f	— но	d
19		2g	BnO OBn 3cg ⁷	96
20		2h	BnO OH 3ch	74°

^a Reaction conditions: 1 (1.2 equiv), 2 (1.0 equiv), TMSOTf (1.2 equiv), CH_2Cl_2 , 4 Å MS, 0 °C \rightarrow rt.

corresponding α -O-glycoside⁷ was obtained (\sim 60%). The last phenol employed as an acceptor is 4,6-di-*tert*-butyl-1,3-dihydroxybenzene (**2h**) in an attempt to obtain the corresponding 2-(β -D-glucopyranosyl)-1,3-dihydroxybenzene derivative **3ah**. Compound **3ah**, if its 4,6-di-*tert*-butyl group could be taken off, would be a key intermediate for the synthesis of puerarin and related isoflavone-C-glycosides. ⁸ Gratifyingly, coupling of the

resorcinol derivative **2h** with trifluoroacetimidate **1a** afforded the desired 2-C-β-D-glucopyranoside **3ah** in a good 56% yield (Fig. 1).

However, deprotection of the 4,6-di-*tert*-butyl groups in **3ah** under a variety of acidic conditions (in the presence of CF₃COOH, H₃PO₄, AlCl₃, K-10, or Zn(OAc)₂)⁹ led to complex mixtures; the desired compound **4** was obtained in not more than 20% yield (CF₃COOH, rt)

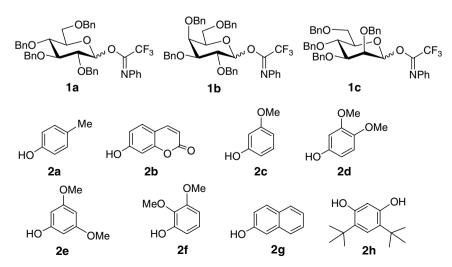


Figure 1. Glycosyl trifluoroacetimidate donors (1a-c) and phenol acceptors (2a-h).

^b Isolated yields (based on phenol 2).

^c The anomeric configuration was confirmed by ¹H NMR analysis of the corresponding debenzylation product.

^d It was not possible to purify the desired C-glycoside.

^e The anomeric configuration of the mannopyranosides 3cd, 3ce, and 3ch was assumed to be α, as that of the known compound 3cg.

$$3ah \xrightarrow{\text{BnO}} \text{HO} \xrightarrow{\text{HO}} \text{HO} \xrightarrow{\text{HO}} \text{HO} \xrightarrow{\text{HO}} \text{HO}$$

Scheme 1. Reagents and conditions: (a) CF₃COOH, rt, 19%; (b) H₂, Pd/C, CH₃OH/EtOAc, rt, 64%.

(Scheme 1). The removal of the benzyl groups in **4** by hydrogenolysis gave 2-(β -D-glucopyranosyl)-1,3-dihydroxybenzene **5**. The analytical data of **5** are in full agreement with those for the natural product isolated from *Pterocarpes marsupium*, ¹⁰ which further confirmed the assigned structure for the C-glycosylation product **3ah**.

The C-glycosylation of the electron-rich phenols 2c-h with 2,3,4,6-tetra-O-benzyl-galacto- and mannopyranosyl trifluoroacetimidates (1b and 1c)⁶ was also examined with the promotion of TMSOTf (1.2 equiv, 0 °C \rightarrow rt). All the reactions led to a number of spots on the TLC; only the major products were purified and characterized (Table 1). In general, the C-mannopyranosides were obtained in the highest yields, while the corresponding C-glucopyranosides gave the lowest yields (cf., 3ad/3bd/3cd; 3ae/3be/3ce; 3ag/3bg/3cg; and 3ah/3bh/3ch).

In summary, the treatment of the electron-rich phenols with glycosyl trifluoroacetimidates in the presence of TMSOTf led to the corresponding *ortho*-hydroxyaryl C-glycosides as the major products. The regioselectivity of the C-glycosylation was fully determined by the phenolic acceptor and the stereoselectivity was controlled by the glycosyl donors to give the relatively more stable C- β -gluco- and galactopyranosides and the C- α -mannopyranosides. It was found that C-glycosylation with mannopyranosyl donors gave the highest yields, while the glucopyranosyl donors gave the lowest yields.

1. Experimental

1.1. General methods

See Ref. 11.

1.2. Typical procedure for the coupling of glycosyl *N*-phenyltrifluoroacetimidates with phenols

A mixture of the glycosyl trifluoroacetimidate **1c** (426 mg, 0.6 mmol), naphthen-2-ol **2g** (72 mg, 0.5 mmol), and 4 Å MS (\sim 200 mg) in anhydrous CH₂Cl₂ (5 mL) was stirred at 0 °C for 30 min under a N₂ atmosphere. Then, TMSOTf (0.12 mL, 0.6 mmol) was added. After stirring at 0 °C for 1 h, the mixture was warmed to rt within \sim 3 h. The reaction was quenched by the addition of Et₃N (0.5 mL) and stirring continued for 30 min.

The resulting mixture was filtered through Celite. The filtrates were concentrated to give a brown syrup, which was subjected to silica gel column chromatography (15:1, petroleum ether–EtOAc) to afford **3cg** (319 mg, 96%) as a yellow oil.

1.2.1. *p*-Methylphenyl **2,3,4,6-tetra**-*O*-benzyl-α-D-glucopyranoside (3aa). [α]_D²⁴ +72.8 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.36–6.94 (m, 23H), 5.51 (br s, 1H), 5.04 (d, J = 11.1 Hz, 1H), 4.88 (d, J = 10.8 Hz, 2H), 4.77–4.42 (m, 5H), 4.20 (t, J = 9.6 Hz, 1H), 3.92 (d, J = 9.3 Hz, 1H), 3.82 (d, J = 9.9 Hz, 1H), 3.75 (br s, 2H), 3.62 (d, J = 10.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.8, 138.3, 138.2, 137.9, 130.7, 128.3, 128.0, 127.9, 127.7, 127.6, 126.8, 122.0, 114.6, 96.1, 81.9, 80.1, 75.7, 75.1, 73.4, 72.9, 70.9, 68.4, 29.7. HR-MALDI MS (m/z): calcd for C₄₁H₄₂O₆Na [M+Na]⁺: 653.2873. Found: 653.2897.

1.2.2. 4,6-Di-*tert***-butyl-2-(2,3,4,6-tetra-***O***-benzyl-β-D-glucopyranosyl)-1,3-dihydroxybenzene** (3ah). $[\alpha]_D^{24}$ +18.1 (c 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.37–6.97 (m, 21H), 4.98 (d, J = 11.1 Hz, 2H), 4.91 (d, J = 11.7 Hz, 1H), 4.85 (d, J = 11.8 Hz, 1H), 4.64 (dd, J = 11.8, 6.9 Hz, 2H), 4.55 (d, J = 12.0 Hz, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.29 (d, J = 10.8 Hz, 1H), 3.99–3.88 (m, 1H), 3.82 (d, J = 9.0 Hz, 1H), 3.78–3.66 (m, 3H), 3.57 (d, J = 9.6 Hz, 1H), 1.26 (s, 18H); ¹³C NMR (75 MHz, CDCl₃): δ 138.4, 137.9, 137.8, 128.4, 128.3, 128.0, 127.8, 127.6, 127.4, 124.7, 112.6, 86.5, 81.5, 78.7, 75.7, 75.4, 75.2, 73.4, 67.5, 34.6; HR-MALDI MS (m/z): calcd for C₄₈H₅₆O₇Na [M+Na]⁺: 767.3918. Found: 767.3929.

1.2.3. 2-(2,3,4,6-Tetra-*O*-benzyl-β-D-galactopyranosyl)-5-methoxyphenol (3bc). $[α]_D^{24} - 8.94$ (c 1.0 CHCl₃); 1 H NMR (300 MHz, CDCl₃): δ 7.58 (s, 1H), 7.35–7.24 (m, 17H), 7.06 (d, J = 6.9 Hz, 3H), 6.49 (s, 1H), 6.44 (d, J = 6.9 Hz, 2H), 5.07 (d, J = 8.7 Hz, 1H), 4.76 (s, 2H), 4.67 (d, J = 11.4 Hz, 1H), 4.49–4.41 (m, 3H), 4.30 (d, J = 9.3 Hz, 1H), 4.17 (t, J = 9.3 Hz, 1H), 4.07 (s, 1H), 3.79 (s, 3H), 3.66 (d, J = 6.6 Hz, 2H), 3.57 (d, J = 6.3 Hz, 2H); 13 C NMR (75 MHz, CDCl₃): δ 161.1, 156.9, 138.4, 137.7, 130.2, 128.5, 128.4, 128.3, 128.2, 127.9, 127.7, 127.4, 116.2, 105.6, 102.6, 83.6, 81.9, 75.5, 74.4, 73.7, 72.6, 68.5, 55.3; HR-MALDI MS (m/z): calcd C₄₁H₄₂O₇Na [M+Na]⁺: 669.2823. Found: 669.2831.

- **1.2.4. 6-(2,3,4,6-Tetra-***O*-benzyl-β-D-galactopyranosyl)-**3,4-dimethoxyphenol** (**3bd**). $[\alpha]_0^{27} + 3.4$ (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.39–7.24 (m, 18H), 7.06 (br s, 2H), 6.65 (s, 1H), 6.54 (s, 1H), 5.09 (d, J = 11.7 Hz, 1H), 4.79 (br s, 2H), 4.68 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 9.9 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.41 (d, J = 12.3 Hz, 1H), 4.23–4.18 (m, 2H), 4.07 (br s, 1H), 3.92 (d, J = 10.5 Hz, 1H), 3.88 (s, 3H), 3.74 (s, 3H), 3.68 (d, J = 6.6 Hz, 2H), 3.59 (d, J = 5.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 149.9, 138.5, 138.4, 137.7, 128.5, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 114.3, 112.8, 101.8, 83.6, 81.9, 78.8, 75.6, 74.5, 73.7, 73.6, 72.6, 68.5, 56.3, 55.9; HR-MALDI MS (m/z): calcd C₄₂H₄₄O₈Na [M+Na]⁺: 699.2928. Found: 699.2940.
- 1.2.5. 2-(Tetra-O-benzyl-β-D-galactopyranosyl)-3,5-dimethoxyphenol (3be). $[\alpha]_D^{27}$ +24.5 (c 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.67 (s, 1H), 7.28–7.13 (m, 18H), 6.97 (br s, 2H), 6.04 (s, 1H), 5.97 (s, 1H), 5.05 (d, J = 11.7 Hz, 1H), 4.99 (d, J = 11.7 Hz, 1H), 4.90 (d, J = 6.3 Hz, 1H), 4.69 (t, J = 11.4 Hz, 2H), 4.58 (d, J = 11.7 Hz, 1H), 4.44 (d, J = 10.2 Hz, 1H), 4.36 (d, J = 12.3 Hz, 1H), 4.19 (t, J = 9.3 Hz, 1H), 3.99 (s, 1H), 3.95 (d, J = 11.2 Hz, 1H), 3.69 (s, 3H), 3.61 (s, 3H), 3.61–3.43 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 161.4, 158.4, 158.2, 138.6, 138.2, 137.7, 128.4, 128.3, 128.1, 127.9, 127.8, 127.6, 127.5, 127.4, 105.5, 94.5, 90.0, 83.9, 78.9, 75.5, 74.4, 74.1, 73.8, 73.5, 72.8, 68.4, 55.5, 55.3; HR-MALDIMS (m/z): calcd $C_{42}H_{44}O_8Na [M+Na]^+$: 699.2928. Found: 699.2949.
- 1.2.6. 1-(2,3,4,6-Tetra-*O*-benzyl-β-D-galactopyranosyl)**naphthen-2-ol** (**3bg**). $[\alpha]_D^{24}$ 50.1 (*c* 1.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.19 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 8.4 Hz, 2H), 7.35–7.08 (m, 18H), 7.01 (t, J = 7.8 Hz, 1H), 6.90 (t, J = 7.2 Hz, 2H), 6.32 (d, J = 7.8 Hz, 2H), 5.28 (d, J = 9.6 Hz, 1H), 5.05 (d, J = 11.7 Hz, 1H), 4.72 (s, 2H), 4.65 (d, J = 11.4 Hz, 1H), 4.39–4.29 (m, 3H), 4.11 (d, J = 9.6 Hz, 1H), 4.06 (s, 1H), 3.73 (t, J = 6.6 Hz, 2H), 3.52 (d, J = 6.3 Hz, 2H), 3.45 (d, J = 9.9 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ 154.8, 138.5, 137.7, 137.2, 132.7, 130.3, 128.6, 127.9, 127.8, 127.6, 127.5, 127.4, 126.5, 122.9, 122.8, 119.5, 115.5, 100.3, 83.9, 79.1, 75.6, 74.5, 73.8, 73.6, 73.3, 73.1, 72.9, 72.8, 72.2, 68.5; HR-MALDI MS (m/z): calcd for $C_{42}H_{44}O_8Na$ $[M+Na]^+$: 689.2874. Found: 689.2889.
- **1.2.7. 4,6-Di-***tert*-butyl-2-(**2,3,4,6-tetra-***O*-benzyl-β-**D**-galactopyranosyl)-1,3-dihydroxybenzene (3bh). $[\alpha]_D^{27}$ +4.6 (c 1.2, CHCl₃); 1 H NMR (300 MHz, CDCl₃): δ 7.36–7.01 (m, 21H), 5.06 (d, J = 12.0 Hz, 1H), 4.88–4.64 (m, 5H), 4.49 (br s, 1H), 4.33 (d, J = 10.5 Hz, 2H), 4.12 (br s, 1H), 3.72 (t, J = 8.1 Hz, 2H), 3.60 (d, J = 5.7 Hz, 2H), 1.36 (s, 18H); 13 C NMR (CDCl₃,

- 75 MHz): δ 138.6, 137.9, 137.7, 136.8, 128.5, 128.2, 127.9, 127.5, 127.4, 124.6, 112.9, 84.4, 78.9, 77.6, 75.9, 75.8, 74.2, 73.5, 72.8, 72.1, 68.1, 34.5; HR-MALDI MS (m/z): calcd for $C_{48}H_{56}O_8Na$ [M+Na]⁺: 767.3918. Found: 767.3923.
- **1.2.9. 2-(2,3,4,6-Tetra-***O*-benzyl-α-D-mannopyranosyl)-**3,5-dimethoxyphenol (3ce).** $[\alpha]_D^{27}$ +20.2 (c 1.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.66 (s, 1H), 7.32–7.14 (m, 20H), 6.11 (s, 1H), 5.93 (s, 1H), 4.91 (s, 1H), 4.90 (d, J = 10.8 Hz, 1H), 4.67–4.42 (m, 7H), 4.15 (t, J = 9.6 Hz, 1H), 3.93 (br s, 1H), 3.77 (s, 3H), 3.74 (t, J = 9.0 Hz, 3H), 3.66 (s, 3H), 3.53 (d, J = 9.0 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ 160.9, 158.9, 157.1, 138.5, 138.3, 128.3, 128.2, 128.0, 127.9, 127.7, 127.6, 127.5, 127.2, 103.2, 94.5, 90.3, 84.1, 79.6, 76.8, 76.2, 75.2, 74.5, 74.4, 73.4, 72.1, 68.8, 55.4, 55.3; HR-MALDI MS (m/z): calcd for C₄₂H₄₄O₈Na [M+Na]⁺: 699.2928. Found: 699.2919.
- 1.2.10. 4,6-Di-tert-butyl-2-(2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranosyl)-1,3-dihydroxybenzene (3ch). $[\alpha]_D^{27}$ -1.1 (*c* 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.25–6.90 (m, 21H), 5.37 (d, J=11.8 Hz, 1H), 4.52–4.36 (m, 5H), 4.29 (d, J=9.3 Hz, 2H), 4.14–4.02 (m, 3H), 3.89–3.71 (m, 4H), 1.31 (s, 18H); ¹³C NMR (CDCl₃, 75 MHz): δ 138.0, 137.7, 136.6, 128.7, 128.4, 128.1, 127.9, 127.6, 124.3, 112.9, 75.9, 75.6, 73.3, 73.2, 72.5, 71.5, 67.2, 34.6; HR-MALDI MS (m/z): calcd for C₄₈H₅₆O₈Na [M+Na]⁺: 767.3907. Found: 767.3907.

Acknowledgements

This work was supported by the Chinese Academy of Sciences (KGCX2-SW-213-05).

References

 (a) Hurd, C. D.; Bonner, W. A. J. Am. Chem. Soc. 1945, 67, 1664–1668; (b) Hurd, C. D.; Bonner, W. A. J. Am. Chem. Soc. 1945, 67, 1759–1764.

- Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742–760.
- (a) Jaramillo, C.; Knapp, S. Synthesis 1994, 1–20; (b) Lee, D. Y. W.; He, M. Curr. Top. Med. Chem. 2005, 5, 1333–1350.
- Kalvoda, L. Collect. Czec. Chem. Commun. 1973, 38, 1679–1682.
- (a) Schmidt, R. R.; Hoffmann, M. Tetrahedron Lett. 1982,
 409–412; (b) Schmidt, R. R.; Effenberger, G. Carbohydr. Res. 1987, 171, 59–79; (c) Mahling, J.-A.; Schmidt,
 R. R. Synthesis 1993, 325–328.
- (a) Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405–2407;
 (b) Adinolfi, M.; Barone, G.; Iadonisi, A.; Schiattarella, M. Synlett 2002, 269–270;
 (c) Cai, S.; Yu, B. Org. Lett. 2003, 5, 3827–3830;
 (d) Tanaka, H.; Iwata, Y.; Takahashi, D.; Adachi, M.; Takahashi, T. J. Am. Chem. Soc. 2005, 127, 1630–1631;
 (e) Bedini, E.; Esposito, D.; Parrilli, M. Synlett 2006, 825–830.

- Palmacci, E. R.; Seeberger, P. H. Org. Lett. 2001, 3, 1547– 1550.
- 8. (a) Lee, D. Y. W.; Zhang, W.; Karnati, V. V. R. *Tetrahedron Lett.* **2003**, *44*, 6857–6859; (b) Eade, R. A.; McDonald, F. J.; Pharm, H. P. *Aust. J. Chem.* **1978**, *31*, 2699–2706.
- (a) McOmie, J. F. W.; Saleh, S. A. Tetrahedron 1973, 29, 4003–4005; (b) Sartori, G.; Bigi, F.; Maggi, R.; Porta, C. Tetrahedron Lett. 1994, 38, 7073–7076; (c) Bigi, F.; Conforti, M. L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron Lett. 2001, 42, 6543–6545; (d) Liu, F. Q.; Liebeskind, L. S. J. Org. Chem. 1998, 63, 2835–2844
- 10. Suri, K. A.; Satti, N. K.; Gupta, B. D.; Suri, O. P. *Indian J. Chem.* **2003**, *42B*, 432–433.
- 11. Sun, J.; Han, X.; Yu, B. Carbohydr. Res. 2003, 338, 827-